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Fairness and causation

Jacob is a black male law school applicant. He scored 
55 in LSAT and had UGPA 3.3. He was rejected.


• Had Jacob been white instead, would he had been accepted?
— counterfactual


• Did Jacob’s race cause him to get negative outcome? 


   — counterfactual fairness (Kusner et al. 2017)1


Such questions of fairness need counterfactual data!

Is the law school admission process fair?

How do we generate them?

1Matt J Kusner et al. “Counterfactual Fairness”. In Advances in Neural Information Processing Systems 30.

https://papers.nips.cc/paper/6995-counterfactual-fairness


Counterfactuals

Can we generate counterfactual data for fairness  
in the absence of the whole causal model?

Generating counterfactual (Pearl et al. 2009)2 —


1. Abduction: Given observed ,  estimate  

2. Action: Intervene on  by setting it to 


3. Prediction: Re-compute  using  under intervention 

X A = a Z

A a′ 

X Z do(A = a′ )

Need complete access to causal model! 

Infeasible in real settings.
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2Pearl, J. (2009). Causality: Models, reasoning, and inference, (2nd ed.). New York: Cambridge University Press.

http://bayes.cs.ucla.edu/BOOK-2K/


Approach
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Simplify

UGPA ∼ …LSAT ∼ …

FYA ∼ … Know ∼ …

Structural equations

Assumptions

Training
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from data

1. Infer  from , 


2. Set  at decoder


3. Generate  from  and 

Z X A = a

A = a′ 
X Z A = a′ 

Generating counterfactual

1. Abduction: …


2. Action: …


3. Prediction: …

Compute



Can CVAE generate 
counterfactuals?
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LSAT MAE UGPA MAE FYA MAE Cosine Sim.

0.013 0.028 0.005 0.9997

Counterfactual generation quality (Race: White to Black).

• Train CVAE on synthetic generated 
data.  

• Condition on  (race, sex).


• Metric: Mean absolute error (MAE), 
cosine similarity b/w CVAE & causal 
counterfactuals.

A

CVAE can generate faithful counterfactuals!



Auditing counterfactual 
fairness

• Dataset: UCI Adult income


• Trained classification model 


‣ Predict income level (<=50K; >50K) 


‣ Sensitive feature (Gender: Male-Female)


• Audit counterfactual fairness:  

‣ Male individual was predicted to have high income. 


‣ If individual was female instead, would the 
prediction change?
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Bias

Model biased negatively towards females!

High-income males  low-income counterfactual females!→


