On Computing Counterfactuals for Causal Fairness

Master's Thesis

Ayan Majumdar

Supervisors

Krishna Gummadi, Isabel Valera

UNIVERSITÄT DES SAARLANDES

Data-driven ML algorithms heavily deployed in today's tech industry

Global venture financing of artificial intelligence companies, 2018 2010–2018*

Source: Venture Pulse, Q4'18, Global Analysis of Venture Funding, KPMG Enterprise, *As of 12/31/18. Data provided by PitchBook, January 15, 2019

Data-driven ML algorithms make **critical** predictions!

Global venture financing of artificial intelligence companies, 2018 2010–2018*

Source: Venture Pulse, Q4'18, Global Analysis of Venture Funding, KPMG Enterprise. *As of 12/31/18. Data provided by PitchBook, January 15, 2019

Data-driven ML algorithms make **critical** predictions!

Global venture financing of artificial intelligence companies, 2018 2010–2018*

Source: Venture Pulse, Q4'18, Global Analysis of Venture Funding, KPMG Enterprise, *As of 12/31/18. Data provided by PitchBook, January 15, 2019

Data-driven ML algorithms make **critical** predictions!

Global venture financing of artificial intelligence companies, 2018 2010–2018*

ÉCard EQUIFAX ZEST

Data-driven ML algorithms make **critical** predictions!

EQUIFAX

tine */ue amazon entelo

ÉCard

7ES

Global venture financing of artificial intelligence companies, 2018 2010–2018*

Fairness in ML systems

Studies have shown potential **bias**!

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

> by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublic May 23, 2016

Apple Card algorithm sparks gender bias allegations against Goldman Sachs

Entrepreneur David Heinemeier Hansson says his credit limit was 20 times that of his wife, even though she has the higher credit score

Why Amazon's Automated Hiring Tool Discriminated Against Women

By Rachel Goodman, Staff Attorney, ACLU Racial Justice Program OCTOBER 12, 2018 | 1:00 PM

TAGS: Women's Rights in the Workplace, Women's Rights, Privacy & Technology

Fairness in ML systems

Led to **extensive** research in the domain...

Machine Bias

USEG ACTOSS THE COUNTRY TO PREDICT TUTURE CHIMINAIS. AND IT S DIASED against blacks. by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

Credits: Moritz Hardt, CS 294-Fairness in Machine Learning

Business

Apple Card algorithm sparks gender bias allegations against Goldman Sachs

ntrepreneur David Heinemeier Hansson says his credit limit was 20 times that of his wife, even though she has the igher credit score

Why Amazon's Automated Hiring Tool Discriminated Against Women

By Rachel Goodman, Staff Attorney, ACLU Racial Justice Program OCTOBER 12, 2018 | 1:00 PM

TAGS: Women's Rights in the Workplace, Women's Rights, Privacy & Technology

Many definitions

- Group: Fairness through unawareness, demographic parity, ...
- Individual: individual fairness

Many definitions

- Group: Fairness through unawareness, demographic parity, ...
- Individual: individual fairness

However...

Many definitions

- Group: Fairness through unawareness, demographic parity, ...
- Individual: individual fairness

However...

- What is the **cause** of bias?
- How to **eliminate** bias?
- Which individuals get **similar treatment**?

Many definitions

- Group: Fairness through unawareness, demographic parity, ...
- Individual: individual fairness

However...

- What is the **cause** of bias?
- How to **eliminate** bias?
- Which individuals get **similar treatment**?

Is the law school admission process fair?

Jacob is a **black male** law school applicant. He scored 55 in LSAT and had UGPA 3.3. He was **rejected**.

Is the law school admission process fair?

Jacob is a **black male** law school applicant. He scored 55 in LSAT and had UGPA 3.3. He was **rejected**.

- Had Jacob been **white** instead, would he had been **accepted**?
 - counterfactual

Is the law school admission process fair?

Jacob is a **black male** law school applicant. He scored 55 in LSAT and had UGPA 3.3. He was **rejected**.

- Had Jacob been white instead, would he had been accepted?
 counterfactual
- Did Jacob's race **cause** him to get negative outcome?
 - counterfactual fairness (Kusner et al. 2017)¹

Is the law school admission process fair?

Jacob is a **black male** law school applicant. He scored 55 in LSAT and had UGPA 3.3. He was **rejected**.

- Had Jacob been white instead, would he had been accepted?
 counterfactual
- Did Jacob's race **cause** him to get negative outcome?
 - counterfactual fairness (Kusner et al. 2017)¹

Such questions of fairness need counterfactual data

Is the law school admission process fair?

Jacob is a **black male** law school applicant. He scored 55

Need to **know** data generating process... Causal models!

Such questions of fairness need counterfactual data

I COLICE COURSE

¹Matt J Kusner et al. "Counterfactual Fairness". In Advances in Neural Information Processing Systems 30.

Causal models

Causal graph

Relations between the features

Causal models

Causal graph

Relations between the features

Structural equations

$$LSAT := \mathcal{N}(\exp(b_L + w_L^R R + w_L^S S + w_L^K K), \sigma_L)$$
$$UGPA := \mathcal{N}(b_G + w_G^R R + w_G^S S + w_G^K K, \sigma_G)$$
$$FYA := \mathcal{N}(w_F^R R + w_F^S S + w_F^K K, 1)$$
$$K \sim \mathcal{N}(0, 1)$$

Quantification of the relations

Causal models

Causal graph

Structural equations

$$\begin{aligned} \textbf{LSAT} &:= \mathcal{N}(\exp(b_L + w_L^R R + w_L^S S + w_L^K K), \sigma_L) \\ \textbf{UGPA} &:= \mathcal{N}(b_G + w_G^R R + w_G^S S + w_G^K K, \sigma_G) \\ \textbf{FYA} &:= \mathcal{N}(w_F^R R + w_F^S S + w_F^K K, 1) \\ K \sim \mathcal{N}(0, 1) \end{aligned}$$

Relations between the features

Quantification of the relations

Strict assumptions allow counterfactual generation

Counterfactuals from causal model

1. Abduction: Given X, A = a estimate U

Counterfactuals from causal model

1. Abduction: Given X, A = a estimate ϵ

2. Action: Intervene on A by setting it to a'

¹Pearl, J. (2009). Causality: Models, reasoning, and inference, (2nd ed.). New York: Cambridge University Press.

Counterfactuals from causal model

1. Abduction: Given X, A = a estimate ϵ

2. Action: Intervene on A by setting it to a'

3. *Prediction*: **Counterfactual** X^c using U under intervention do(A = a')

• Prediction \hat{Y} (for any individual) should not change while:

- Prediction \hat{Y} (for any individual) should not change while:
 - Intervene on sensitive feature A
 - Keep everything not dependent on \boldsymbol{A} constant

- Prediction \hat{Y} (for any individual) should not change while:
 - Intervene on sensitive feature A
 - Keep everything not dependent on \boldsymbol{A} constant

$$P\left(\hat{Y}_{A\leftarrow a}(U) = y \mid X = x, A = a\right) = P\left(\hat{Y}_{A\leftarrow a'}(U) = y \mid X = x, A = a\right)$$

- Prediction \hat{Y} (for any individual) should not change while:
 - Intervene on sensitive feature A
 - Keep everything not dependent on \boldsymbol{A} constant

$$P\left(\hat{Y}_{A\leftarrow a}(U) = y \mid X = x, A = a\right) = P\left(\hat{Y}_{A\leftarrow a'}(U) = y \mid X = x, A = a\right)$$

• Feature A should not cause \hat{Y} in any individual instance!

• Prediction \hat{Y} (for any individual) should not change while:

Complete causal knowledge is **infeasible** in practice!

• Feature A should not cause \hat{Y} in any individual instance!

¹Matt J Kusner et al. "Counterfactual Fairness". In Advances in Neural Information Processing Systems 30.

• Prediction \hat{Y} (for any individual) should not change while:

Complete causal knowledge is **infeasible** in practice!

Wrong assumptions \rightarrow high **errors**!

• Feature A should not cause \hat{Y} in any individual instance!

¹Matt J Kusner et al. "Counterfactual Fairness". In Advances in Neural Information Processing Systems 30.

Research Question

Can we generate **counterfactuals** for **counterfactual fairness** without complete **causal** knowledge?

Research Question

Can we generate **counterfactuals** for **counterfactual fairness** without complete **causal** knowledge?

1. Use generated **counterfactuals** to audit trained predictive models?

Research Question

Can we generate **counterfactuals** for **counterfactual fairness** without complete **causal** knowledge?

- 1. Use generated **counterfactuals** to audit trained predictive models?
- 2. Build a predictive model that is **counterfactually fair**?

Recap: Causal counterfactuals

Causal graph

Structural equations

$$\mathbf{LSAT} := \mathcal{N}(\exp(b_L + w_L^R R + w_L^S S + w_L^K K), \sigma_L)$$
$$\mathbf{UGPA} := \mathcal{N}(b_G + w_G^R R + w_G^S S + w_G^K K, \sigma_G)$$
$$\mathbf{FYA} := \mathcal{N}(w_F^R R + w_F^S S + w_F^K K, 1)$$
$$K \sim \mathcal{N}(0, 1)$$

Relations between the features

Quantification of the relations

Generate counterfactuals by Pearl's 3 steps

Recap: Causal counterfactuals

Causal graph

Structural equations

LSAT := $\mathcal{N}(\exp(b_L + w_L^R R + w_L^S S + w_L^K K), \sigma_L)$

How to generate counterfactuals in the absence of complete causal knowledge?

Relations between the features

Quantification of the relations

Generate counterfactuals by Pearl's 3 steps

Fairness scenarios have implicit structures
1. Sensitive features intrinsic factors for individuals

 \rightarrow A root nodes in causal graph

1. Sensitive features intrinsic factors for individuals

 \rightarrow A root nodes in causal graph

2. Sensitive features affect some observed features

 \rightarrow Causal links from A to some X

1. Sensitive features intrinsic factors for individuals

 \rightarrow A root nodes in causal graph

2. Sensitive features affect some observed features

 \rightarrow Causal links from A to some X

3. Hidden factors **independent** of **sensitive** features

 $\rightarrow \epsilon$ independent root nodes in causal graph

1. Sensitive features intrinsic factors for individuals

 \rightarrow A root nodes in causal graph

Can work with simpler assumptions!

3. Hidden factors independent of sensitive features

 $\rightarrow \epsilon$ independent root nodes in causal graph

✓ Fairness scenarios allow using simpler causal assumptions!

Example fairness causal graphs^{1,2}

✓ Fairness scenarios allow using simpler causal assumptions!

Example fairness causal graphs^{1,2}

²Chris Russell et al. "When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness". In NIPS 2017

✓ Fairness scenarios allow using simpler causal assumptions!

How to model data generating process?

Example fairness causal graphs^{1,2}

Assumed causal graph

¹Matt J Kusner et al. "Counterfactual Fairness". In NIPS 2017

²Chris Russell et al. "When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness". In NIPS 2017

✓ **Fairness** scenarios allow using **simpler** causal assumptions!

How to model data generating process?

Use deep generative modeling!

Example fairness causal graphs^{1,2}

Assumed causal graph

¹Matt J Kusner et al. "Counterfactual Fairness". In NIPS 2017

²Chris Russell et al. "When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness". In NIPS 2017

Modeling

1. Intervene on A for counterfactual fairness

 \rightarrow learn generative process **conditioned** on A

Modeling

1. Intervene on A for counterfactual fairness

 \rightarrow learn generative process **conditioned** on A

2. Estimate total effect of causal hidden factors in data

 \rightarrow use **latent-space** generative modeling

Modeling

1. Intervene on A for counterfactual fairness

 \rightarrow learn generative process **conditioned** on A

- 2. Estimate total effect of causal hidden factors in data
 - \rightarrow use **latent-space** generative modeling

Use Conditional Variational AutoEncoders!

Two deep neural networks:

- Encoder: Given data, learn latent *z* conditioned on *A*
 - *z* should match a **prior** distribution (Gaussian)

Two deep neural networks:

- Encoder: Given data, learn latent *z* conditioned on *A*
 - *z* should match a **prior** distribution (Gaussian)
- **Decoder**: Generate realistic data given A and z.
 - Faithful **reconstruction** of input data

Two deep neural networks:

- Encoder: Given data, learn latent *z* conditioned on *A*
 - *z* should match a **prior** distribution (Gaussian)
- **Decoder**: Generate realistic data given A and z.
 - Faithful **reconstruction** of input data

Train both models end-to-end to maximize data-likelihood

Two deep neural networks:

- Encoder: Given data, learn latent *z* conditioned on *A*
 - *z* should match a **prior** distribution (*Gaussian*)
- **Decoder**: Generate realistic data given A and z
 - Faithful **reconstruction** of input data

Train both models end-to-end to maximize data-likelihood

$$\log p_{\theta}(X|A) \geq \mathbb{E}_{q_{\phi}(z|X,A)}[\log p_{\theta}(X|z,A)] - \mathbb{D}_{KL}[q_{\phi}(z|X,A) | | p(z)]$$

$$\underbrace{}_{\mathsf{Decoder}} \qquad \underbrace{\mathsf{Encoder}}$$

Evidence Lower BOund (ELBO) Loss

CVAE Counterfactuals

Causal

CVAE

CVAE architecture

CVAE architecture

Results

Can we practically operationalize counterfactual fairness?

Baseline Methods

Counterfactual Fairness¹

- Ideal causal knowledge to generate counterfactuals
- Use MCMC for estimation with causal models
- Flexible, need strict causal assumptions!

FlipTest²

- Approximate counterfactuals via optimal transport
- Use GAN with **no** latent factor modeling
- Inflexible, fewer assumptions but not clear!

Experimental Setup

Datasets

- Synthetic
 - Various functional models
- Semi-synthetic
 - Law School Admissions
 - COMPAS Recidivism risk

Experimental Setup

Datasets

- Synthetic
 - Various functional models
- Semi-synthetic
 - Law School Admissions
 - COMPAS Recidivism risk

Models

- Causal MCMC
 - Varying causal assumptions (ideal, linear)
- FlipTest GAN
 - Needs training more models!
- CVAE (ours)

Approximating counterfactuals

- Goal: Faithful counterfactuals for fairness using reduced assumptions
- Metric: Mean absolute error b/w approx. & ground-truth counterfactuals

$$\mathbf{Err} = \frac{1}{N} \sum_{i=1}^{N} \left| X_i - \hat{X}_i^c \right|$$

Approximating counterfactuals

- Goal: Faithful counterfactuals for fairness using reduced assumptions
- Metric: Mean absolute error b/w approx. & ground-truth counterfactuals

$$\mathbf{Err} = \frac{1}{N} \sum_{i=1}^{N} \left| X_i - \hat{X}_i^c \right|$$

Dataset	MCMC-ideal	MCMC-linear	FlipTest	CVAE
Synthetic (Non-linear)	0.0035 +/- 0.0005	0.035 +/- 0.012	0.033 +/- 0.007	0.008 +/- 0.002
Synthetic (Non-additive)	0.022 +/- 0.002	0.023 +/- 0.005	0.042 +/- 0.004	0.021 +/- 0.001
Law School	0.27 +/- 0.001	0.32 +/- 0.02	0.3 +/- 0.02	0.25 +/- 0.011
COMPAS	0.035 +/- 0.018	0.17 +/- 0.03	0.12 +/- 0.016	0.06 +/- 0.012

Counterfactual generation quality (Race: Black to White)

Approximating counterfactuals

- Goal: Faithful counterfactuals for fairness using reduced assumptions
- Metric: Mean absolute error b/w approx. & ground-truth counterfactuals

CVAE can generate faithful counterfactuals! (Fewer assumptions)

Synthetic (Non-linear)	0.0035 +/- 0.0005	0.035 +/- 0.012	0.033 +/- 0.007	0.008 +/- 0.002
Synthetic (Non-additive)	0.022 +/- 0.002	0.023 +/- 0.005	0.042 +/- 0.004	0.021 +/- 0.001
Law School	0.27 +/- 0.001	0.32 +/- 0.02	0.3 +/- 0.02	0.25 +/- 0.011
COMPAS	0.035 +/- 0.018	0.17 +/- 0.03	0.12 +/- 0.016	0.06 +/- 0.012

Counterfactual generation quality (Race: Black to White)

Can we use generated **counterfactuals** for auditing?

Auditing setup

- Trained regression model (COMPAS)
 - Predict output score (*recidivism risk*)
 - Audit w.r.t. **race** (*Black* \rightarrow *White*)

Auditing setup

- Trained regression model (COMPAS)
 - Predict output score (*recidivism risk*)
 - Audit w.r.t. **race** (*Black* \rightarrow *White*)
- Audit counterfactual fairness:
 - **Black** inmate was predicted to have risk of 9.
 - If inmate was white instead, would the predicted risk change?

Auditing setup

- Trained regression model (COMPAS)
 - Predict output score (*recidivism risk*)
 - Audit w.r.t. **race** (*Black* \rightarrow *White*)
- Audit counterfactual fairness:
 - **Black** inmate was predicted to have risk of 9.
 - If inmate was white instead, would the predicted risk change?
- Approximated counterfactuals to audit model
 - How well can we match the **true causal** auditing?

Audit counterfactual fairness

Black → White : : Predicted risk reduces!

Model biased negatively towards blacks!

FlipTest inaccurate, mismatch in auditing!

Audit counterfactual fairness

CVAE auditing \simeq True causal auditing *(Fewer assumptions)*

Black → White : : Predicted risk reduces!

Model biased negatively towards blacks!

FlipTest inaccurate, mismatch in auditing!

Can we train a **fair** predictive system using our model?

Fair predictor setup

★ Goal: Train a fair predictive model (*Law School*)

Compare following models:

Fair predictor setup

★ Goal: Train a fair predictive model (*Law School*)

Compare following models:

- Full: Use all data features (incl. A)
- **Unaware**: Use all features except *A*

Fair predictor setup

★ Goal: Train a fair predictive model (*Law School*)

Compare following models:

- **Full**: Use all data features (incl. *A*)
- **Unaware**: Use all features except *A*
- Fair-U: Train on ideal MCMC hidden ${\cal U}$
Fair predictor setup

★ Goal: Train a fair predictive model (*Law School*)

Compare following models:

- Full: Use all data features (incl. A)
- **Unaware**: Use all features except *A*
- Fair-U: Train on ideal MCMC hidden ${\cal U}$
- Fair-z: Train on CVAE latent z.

Fair predictor setup

★ Goal: Train a fair predictive model (*Law School*)

Compare following models:

- **Full**: Use all data features (incl. *A*)
- **Unaware**: Use all features except *A*
- Fair-U: Train on ideal MCMC hidden ${\cal U}$
- Fair-z: Train on CVAE latent z

Metrics:

- Accuracy: Root mean squared error (*RMSE*)
- Unfairness: Absolute difference in outcome to counterfactual

Use data and its causal counterfactual for testing

Training fair predictor

Training fair predictor

Model	Pred. Error (<i>RMSE</i>)	Unfairness (Abs. Diff.)
Full	1 (very accurate)	1.05 (highly biased)
Unaware	1.04 (accurate)	0.58 (less biased)
Fair-U	1.12 (less accurate)	0.01 (fair)
Fair-z	1.12 (less accurate)	0.01 (fair)

Training fair predictor

CVAE can be used for fair predictions!

(Fewer assumptions)

Full	1 (very accurate)	1.05 (highly biased)
Unaware	1.04 (accurate)	0.58 (less biased)
Fair-U	1.12 (less accurate)	0.01 (fair)
Fair-z	1.12 (less accurate)	0.01 (fair)

Conclusion

- Causal analysis useful for fairness: counterfactual fairness
 - Requires strict assumptions \rightarrow impractical!
- CVAE generates counterfactuals under reduced causal assumptions
 - Possible for scenarios of counterfactual fairness!
- Approximate counterfactuals allow for **reliable** auditing
- CVAE latent factors help train fair prediction model

Discussion

- Incorporate more assumptions in our approach for other causal fairness definitions
- Analyze scenarios where our assumptions fail/do not hold
- Rethink practical deployment, legal and societal factors
- Study human experts' rating of counterfactual mappings

Thank you!